结构生物学
分类
领域
2018年Alphafold出现时,实验结构生物学领域认为被战胜的仅仅是传统的结构预测领域,2020年Alphafold2之后,实验结构生物学领域应该开始思考如何与之共存以及如何“拜师学艺”了。
文章
实验结构生物学领域接下来需要做的一个事情是要拥抱变化,更好地与预测方法结合以及共同发展。
文章
最近两年,结构生物学领域经历了与围棋界类似的故事。
文章
问题
同样的道理,对于复杂的结构生物学问题,预测手段本身还不能号称完全解决了问题。
文章
实验
但即便如此,这个过程中的动力学问题,简单说,就是变化速度,依旧不是现在的结构生物学实验手段可以揭示的,需要借助更多生物物理技术、计算生物学手段去探索。
文章
我认为AlphaFold2是个大突破,后续可能性很多,会替代一些简单的结构生物学实验,但对当下科学家追求的前沿生物学来说,共赢大于竞争;
文章
传统上,蛋白质结构预测可以分成基于模板和从头预测,但是AlphaFold2只用同一种方法——机器学习,对几乎所有的蛋白质都预测出了正确的拓扑学的结构,其中有大约2/3的蛋白质预测精度达到了结构生物学实验的测量精度。
文章
因此,未来对有特定功能的、多个成分组成的、生物大分子复合体的结构解析,以及体内的结构分析,将成为结构生物学实验研究的主要内容。
文章
影响
AlphaFold为结构生物学家提供了除晶体学、冷冻电镜、NMR以外的另外一种手段,用于揭示生物大分子发挥作用的分子机制。
文章