科学网—“逻辑”与“逻辑学”(4)--“逻辑学”是怎样的一门科学?
精选
已有 4179 次阅读
2024-11-5 06:18
| 个人分类: 逻辑学 | 系统分类: 科研笔记
[敬请读者注意] 本人保留本文的全部著作权利。如果哪位读者使用本文所描述内容,请务必如实引用并明白注明本文出处。如果本人发现任何人擅自使用本文任何部分内容而不明白注明出处,恕本人在网上广泛公布侵权者姓名。敬请各位读者注意,谢谢!
“逻辑”与“逻辑学” (4) -- “逻辑学”是怎样的一门科学?
程京德
在人类所有文化活动的语言文字交流当中,“逻辑(λογικ ή /λ ό γο ς , logique, Logic, logik, 论理[ろんり])”是最频繁地被用到的词汇之一,同时也是最多义/歧义的词汇之一。那么,到底什么是“逻辑”?其涵义究竟为何?对于这个问题,随便问十个人就可能会得到十个不同的回答。另一方面,尽管希腊语及法、英、德语等中“逻辑”和“逻辑学”通常都是用一个词汇来表达,但是在日语和中文中,“逻辑”和“逻辑学”都可以是(但未必一定是)用两个词汇来清晰地区分表达的。所以,在理解世界各主要语言文字表达的时候,都有基于具体的上下文语境来区分清楚“逻辑”和“逻辑学”的需要。实际上,在人类所有文化活动的语言文字交流当中的绝大多数场合,“逻辑”一词并非指称“逻辑学”而是指称各种各样的具体场景,其中有些场景甚至很难说与“逻辑学”相关。本文试图澄清“逻辑”与“逻辑学”的诸多异同[1-3]。
“ 逻辑学 ”是怎样的一门科学?
司各脱(John Duns Scotus, 1265-1308)说“逻辑学是科学的科学,是技艺的技艺(Logic is the Science of Sciences and the Art of Arts)。” 塔斯基(Alfred Tarski, 1901-1983)说“有一门特殊的学问叫做逻辑学,它被认为是所有其他科学的基础(There is a special discipline, called logic, which is considered to be the basis for all other sciences)。” 哥德尔(Kurt Friedrich Gödel, 1906-1978)说“数理逻辑,它是一门先于所有其他科学的科学,包含了支撑所有科学的思想和原理(Mathematical Logic, it is a science prior to all others, which contains the ideas and principles underlying all sciences)。” 王力先生说“逻辑是关于思维的形式和规律的科学。” 那么,“逻辑学”究竟是怎样的一门科学呢?
“逻辑学”以论证和推理作为基本研究对象
首先,无论思维和语言的关系如何,无论思维和语言各自与“逻辑”/“逻辑学”的关系如何,“逻辑学”的基本研究对象是论证和推理[4-19],而并非思维或者语言(详见下文),尽管论证和推理通常是用语言来表达的,语言与思维又有着密切的关系。
一个“论证”是从一组前提得出一个结论,通常认为有三种:演绎论证、归纳论证、溯因论证。一个“推理”是由若干个论证有序地构成的序列,既可以由同一种类的论证单一地构成,亦可以由不同种类的论证混合地构成。
无论是论证还是推理,都有从前提得出结论时,在道理上是否合理的问题。按照不同的评价观点和标准,当然就会对同一个论证或推理有不同的评价结果。如果永远坚持“公说公有理,婆说婆有理”,那么人类社会中的各种交流尤其是论辩也就永远不会有统一结果了。而如果我们试图寻求某种可以不依赖于交流论辩的具体领域之具体内容的、具有一般性的评价标准,那么这正是自古至今“逻辑学”所做的工作(请参阅下图)。
为了判断论证和推理的合理性,当然要考查各种论证和推理的具体实例,但是,具体实例之数目是无穷的,一个一个地分别去考查,当然无可穷尽。古希腊哲学家亚里士多德最早发现和归纳出了一些论证和推理的格式(三段论等),使得人们可以相对抽象地判别一类一类的论证和推理的合理性, “逻辑学”从此应运而生[9,20]。这也就是为什么尽管在古代中国和古印度都曾有过关于“逻辑”的讨论,但是世界一般公认是古希腊哲学家亚里士多德创立了“逻辑学”的原因[9,20]。
“逻辑学”以论证和推理作为基本研究对象,更准确地说是,“逻辑学”以论证和推理的抽象格式/形式/模式作为基本研究对象。笔者在此有意罗列“格式/形式/模式”,目的是不限制性地指称“符号化的形式化”,于是可以把“非形式逻辑学”也包括在“逻辑学”之内。
另一方面,语言和思维都不是“逻辑学”的研究对象。
虽然语言(语句)是概念、陈述、命题、论证、推理等的载体,但是,“逻辑学”研究的是从论证和推理具体实例抽象出来的抽象格式/形式/模式以及它们之间的关系,而并非研究语言载体如何承载“逻辑学”的研究对象。即便是“逻辑学”中的一般(普通、传统)逻辑学和非形式逻辑学(详见下文),更多地使用自然语言表达而非符号表达,关注点也在表达内容而并非语言自身的性质。另外,语言学本身就已经成为一门独立的、内容丰富的学问学科,有其自身的研究对象。
“思维”究竟是什么?这在哲学上还是一个没有定义清楚,不知是否有一天能够统一地定义清楚的含混概念[21,22]。所以,无论多么权威的词典或专家,把“逻辑学”定义为“是关于思维的形式和规律的科学”,几乎就等于什么也没定义,如果“思维究竟是什么”本身还是含混不清的,那么怎么可能清晰地考查其形式和规律?另外,思维中的认知过程及其心理机制应该分别是认知科学和心理学的研究对象。“逻辑学”的研究对象,应该是思维过程结束后的结果之清晰表达而非思维过程本身。
既然思维不是“逻辑学”的研究对象,那么所谓“批判性思维”也就当然不是“逻辑学”的研究对象,尽管批判性思维通常必须以“逻辑”/“逻辑学”作为基本工具[23,24],以至于有人将其划为“非形式逻辑”(详见下文)之一部分[24]。当然,把“批判性思维”视为“逻辑学”的一个应用领域是毫无问题的。
“逻辑学”的目的是建立建全判别论证/推理之正确性的一般有效评价标准
“逻辑学”以论证和推理的抽象格式/形式/模式作为基本研究对象,最终目的是通过建立建全判别论证/推理之正确性的一般有效评价标准,对各类论证和推理实例能够做出正确与否的判别。那么,自古至今,世界上众多逻辑学家们是否已经建立建全了判别论证/推理之正确性的一般有效评价标准呢?对此问题,如果问的是“是否建立了标准?”,那么回答为“是”;如果问的是“是否建立建全了唯一的标准?”,那么回答为“否”。
历史上,逻辑学家们的确曾经认为迟早最终可以建立起唯一正确的逻辑系统(The One True Logic),用之四海而皆准(比如,被誉为“符号逻辑之父”的莱布尼兹就曾经用过“true logic”一词)。但是,在最简单的经典数理逻辑形式系统在弗雷格、罗素/怀德海、希尔伯特、哥德尔等人的工作之下完全建立起来的同时,对其批评之声就从未间断过[25,26]。现今,数理逻辑学家和哲学逻辑学家们的通识是,根据不同的哲学观点,取舍不同的基本假设及第一原理,可以建立构造出众多的形式逻辑系统,各自定义了不同的判别论证/推理之正确性的一般有效评价标准[13,27-43]。
顺便提及一个问题(权当蛇足也罢)。逻辑学家王路有个观点,“必然地得出”[44],王路先生借他人之口说,“逻辑就是‘必然地得出’”,并且自己主张“那是亚里士多德说的”[44]。王路先生认为,“没有逻辑的观念,逻辑的理论出不来。有了逻辑的理论,我们才能让人家知道逻辑的观念是什么意思,什么叫‘必然地得出’。”[44] 但是,这个所谓“必然地得出”观念是多少有些问题的。举王路先生提倡的对文科学生们也必须讲授的现代数理逻辑为例,凡是在论证及推理过程中使用了实质蕴涵悖论的所有论证及推理的任何结果,显然都不可以说是“必然地得出”的,因为那些结果并非在“逻辑上”合理。经典数理逻辑的逻辑有效性评价标准中的“保真性”,在条件句意义下并非合理并非真正地保真。所以,经典数理逻辑的“必然地得出”,现代模态逻辑、相关逻辑、准协调逻辑等形式逻辑系统都不会认可。古希腊时代亚里士多德在其《工具论》之《分析前篇》提出三段论的“必然地得出”,如果仅限于三段论及其衍生,或者现代逻辑学被弗雷格及罗素完全形式化为经典数理逻辑之前,大致上应该是没有问题的。但是,如果把“必然地得出”作为现代“逻辑学”的观念(定义),那么必定是有问题的,等于是在提倡“必然地得出”就是“The One True Logic”。
“逻辑学”是所有科学的基础
任何科学探索发现及其验证都必然需要正确的论证和推理[45]。
因为在科学探索的过程中,最终的科学发现还是未知未被认识的,所以,尽管科学探索发现及其验证中的论证和推理通常是依赖于具体领域具体内容,但是,论证和推理的正确性判别标准不应该是依赖于具体领域具体内容的,否则就有可能陷入循环论证。正是因为“逻辑学”能够为论证和推理提供最一般的、不依赖于具体领域具体内容的正确性判别标准,所以才被视为所有科学的基础。
联合国教科文组织 UNESCO 于1988年发布的科学与技术分类表将“逻辑学”列在数学之前作为第一大基础学科:
“逻辑学”的范围
下图显示了 UNESCO 将“逻辑学”进行细分的结果:
尽管是1988年的分类, UNESCO 的这个分类相当落后于时代。笔者相信,对现代逻辑学多少有些了解的学者都会对 UNESCO 的分类很不满意。
从历史观点来看,“逻辑学”可以包括:一般(普通、传统)逻辑学、经典数理逻辑学、各种哲学逻辑学、非形式逻辑学。
考虑到与数学的关系,可以将“逻辑学”分为两部分,(一)可以说已经融入数学的经典数理逻辑学,以及,(二)非经典逻辑学(包括所有非经典数理逻辑学的各种逻辑学分支)。有些学者把(二)全部划归于“哲学逻辑”,其实这并不妥,因为还有 一般(普通、传统)逻辑学和 非形式逻辑学。
通常认为,经典数理逻辑包含五个部分:逻辑演算、证明论、公理集合论、递归函数论、模型论[46,47]。
现代哲学逻辑发源于麦柯尔(Hugh MacColl, 1837-1909)提出,刘易斯(Clarence Irving Lewis, 1883-1964)发展的现代模态逻辑[42,43],现在已经发展出众多种类的哲学逻辑[29-43]。 由 D. M. Gabbay 和 F. Guenthner 编辑的“哲学逻辑手册(Handbook of Philosophical Logic)”第二版有18卷之多[30] ,涵盖了多种哲学逻辑,比如:代数逻辑、多值逻辑、模态逻辑、条件(句)逻辑、动态逻辑、偏好逻辑、图逻辑、直观主义逻辑、自由逻辑、部分逻辑、相关逻辑、量子逻辑、组合逻辑、准协调逻辑、时态逻辑、询问逻辑、规范(道义)逻辑、重写逻辑、认知逻辑、非单调逻辑、范畴论逻辑、可证性逻辑、混合逻辑等等。
相对于各种现代逻辑学的符号化形式化,“非形式逻辑学”是“逻辑学的一个分支, 其任务是制定非形式的标准、准则和程序,用于论证的分析、解释、评价、批评和和构建(a branch of logic whose task is to develop non-formal standards, criteria, procedures for the analysis, interpretation, evaluation, criticism and construction of argumentation)”[48-51]。
笔者认为,普及“非形式逻辑学”(比如,作为大学的通识课程),对于人们在日常生活交流中避免逻辑谬误[52-58]来说,应该远比现代数理逻辑及其它形式逻辑系统更有效,因为大众当中具备能够充分理解现代数理逻辑的数学基础的人数之比例应该不是很大(笔者的估计是大概不会超过10%)。举例来说,在笔者给某理工科大学的本科生(并非国内最优秀的)讲授数理逻辑课程时,虽然也有少数学生很欣赏笔者的经典数理逻辑规范内容,但是更多学生却对于笔者布置的关于逻辑谬误的课件阅读材料感觉受益匪浅,因为相对于经典数理逻辑的形式化内容,逻辑谬误的分类和实例分析可以澄清学生们平素由习惯形成的误解,对学生们的日常交流和“对付杠精”直接有效。
最后,笔者个人认为,所谓“辩证思维”或“辩证逻辑”不属于现代“逻辑学”,理由与“思维”不是“逻辑学”的研究对象类似但不尽相同。笔者在此不深入讨论。
参考文献
[1] 程京德,“‘逻辑’与‘逻辑学’(1) -- 起源、定义、异同”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2024年10月12日。
[2] 程京德,“‘逻辑’与‘逻辑学’(2) -- 欧美名人的‘逻辑/逻辑学’用例”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2024年10月23日。
[3] 程京德,“‘逻辑’与‘逻辑学’(3) – 中国名人的‘逻辑/逻辑学’用例”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2024年10月31日。
[4] G. Boole, “The Nature of Logic,” 1848, in I. Grattan-Guinness and G. Bornet (Eds.), “George Boole - Selected Manuscripts on Logic and its Philosophy,” Birkhauser Verlag, 1997.
[5] C. S. Peirce, “Reasoning and the Logic of Things - The Cambridge Conferences Lectures of 1898,” K. L. Ketner (Ed.), Harvard University Press, 1992.
[6] M. R. Cohen and E. N. Nagel, “An Introduction to Logic and Scientific Method,” Routledge and Kegan Paul, 1934.
[7] W. V. O. Quine, “Elementary Logic,” Harvard University Press, 1941, 1965, 1980 (Revised Edition).
[8] I. M. Copi and C. Cohen, “Introduction to Logic,” Macmillan, 1953 (I. M. Copi), 1961 (I. M. Copi); 1968 (I. M. Copi), 1972, 1978, 1982, 1986, 1990, Prentice-Hall, 1994, 1997, 2002, 2005, 2008; Routledge, 2011 (with K. D. McMahon, 14th Edition), 2018 (with V. Rodych, 15th Edition).
[9] W. Kneale and M. Kneale, “The Development of Logic,” Oxford Clarendon Press, 1962, 1984 (Paperback Edition with Corrections); 中译:张家龙,洪汉鼎 译,《逻辑学的发展》,商务印书馆, 1985年。
[10] W. C. Salmon, “Logic,” Prentice-Hall, 1963, 1973, 1984 (3rd Edition).
[11] S. C. Kleene, “Mathematical Logic,” John Wiley & Sons, 1967.
[12] R. Jeffrey, “Formal Logic: Its Scope and Limits,” McGraw-Hill, 1967, 1981, 1991, Hackett Publishing, 2006 (4th Edition).
[13] S. Haack, “Philosophy of Logic,” Cambridge University Press, 1978; 中译:罗毅 译,张家龙 校,“逻辑哲学”,商务印书馆, 2003。
[14] J. A. Robinson, “Logic: Form and Function: The Mechanization of Deductive Reasoning,” Edinburgh University Press, 1979.
[15] P. J. Hurley, “A Concise Introduction to Logic,” Wadsworth, 1982, 1985, 1988, 1991, 1993, 1997, 1999, 2003, 2005, Cengage Learning, 2008, 2012, 2014, 2016 (with L. Watson, 13th Edition).
[16] V. Klenk, “Understanding Symbolic Logic,” Prentice-Hall, 1983, 1989, 1994, 2002, 2007 (5th Edition).
[17] J. N. Nolt, D. Rohatyn, and A. Varzi, “Schaum’s Outline of Theory and Problems of Logic,” McGraw-Hill, 1988, 1998 (2nd Edition).
[18] J. Hintikka and G. Sandu, “What is Logic?” in D. Jacquette (Ed.), “Handbook of thePhilosophy of Science, Volume 5: Philosophy of Logic,” pp. 13-39, Elsevier, 2007.
[19] 程京德,“逻辑学是什么”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2023年1月25日。
[20] 程京德,“为什么通常认为逻辑学是发源于古希腊而非古代中国和古代印度?”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2023年1月26日。
[21] M. Heidegger, “Was Heisst Denken?”, Max Niemeyer Verlag, 1954; “What is Called Thinking?” English translated by F. D. Wieck and J. G. Gray, Harper & Row, 1968.
[22] 程京德, “形象思维、抽象思维及逻辑思维”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2023年8月19日。
[23] D. Hitchcock, “Critical Thinking,” The Stanford Encyclopedia of Philosophy, Center for the Study of Language and Information (CSLI), Stanford University, 2018-2022.
[24] J. C. Watson, “Critical Thinking,” Internet Encyclopedia of Philosophy.
[25] 程京德,“条件句:逻辑学中的最核心概念及最大难题”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2023年1月29日。
[26] 程京德,“悖论集锦 (2) -- 作为逻辑学中最大难题的蕴涵悖论问题(上)”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2024年3月18日;“悖论集锦 (2) -- 作为逻辑学中最大难题的蕴涵悖论问题(上)(修订增补版)”,微信公众号“数理逻辑与哲学逻辑”,2024年4月12日;“悖论集锦 (2) -- 作为逻辑学中最大难题的蕴涵悖论问题(下)”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2024年4月18日。
[27] 程京德,“为什么在逻辑学中存在有如此众多的不同逻辑系统?”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2023年1月28日。
[28] D. M. Gabbay (Ed.), “What is a Logical System,” Clarendon Press, 1994.
[29] L. Haaparanta (Ed.), “The Development of Modern Logic,” Oxford University Press, 2009.
[30] D. M. Gabbay and F. Guenthner (Eds.), “Handbook of Philosophical Logic, 2nd Edition,” Vol. 1-18, Springer, 2001-2018.
[31] D. M. Gabbay and J. Woods (Eds.), “Handbook of History of Logic,” Vol. 1-8, Vol. 9 (with J. H. Siekmann), Vol. 10 (with S. Hartmann), Vol. 11 (with F. J. Pelletier), Elsevier, 2004-2012.
[32] L. Goble (Ed.), “The Blackwell Guide to Philosophical Logic,” Blackwell, 2001.
[33] D. Jacquette (Ed.), “Blackwell Companions to Philosophy - A Companion to Philosophical Logic,” Blackwell, 2002.
[34] S. Shapiro (Ed.), “The Oxford Handbook of Philosophy of Mathematics and Logic,” Oxford University Press, 2005.
[35] D. Jacquette (Ed.), “Philosophy of Logic – An Anthology,” Handbook of the Philosophy of Science, Elsevier, 2007.
[36] W. V. Quine, “Philosophy of Logic,” Harvard University Press, 1970, 1986 (2nd Edition).
[37] A. C. Grayling, “An Introduction to Philosophical Logic,” Blackwell, 1982, 1990, 1997 (3rd Edition).
[38] S. Wolffram, “Philosophical Logic – An Introduction,” Routledge, 1989.
[39] G. Priest, “An Introduction to Non-Classical Logic,” Cambridge University Press, 2008 (2nd Edition).
[40] J. MacFarlane, “Philosophical Logic - A Contemporary Introduction,” Routledge, 2021.
[41] S. Read, “Thinking About Logic - An Introduction to the Philosophy of Logic,” Oxford University Press, 1995; 中译:李小五 译,张家龙 校,“对逻辑的思考 - 逻辑哲学导论”,辽宁教育出版社, 1998.
[42] 程京德,“哲学逻辑 (1) - 何谓‘哲学逻辑’?”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2023年8月29日。
[43] 程京德,“哲学逻辑 (2) – 模态逻辑”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2023年8月30日;“哲学逻辑 (2) – 模态逻辑(Modal Logic)(增补版)”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2024年5月20日。
[44] 王路:“‘逻辑的观念’贯穿我整个学术研究过程”,中华读书报,2024年7月10日。
[45] K. Popper, “Logik der Forschung,” Verlag von Julius Springer, 1935; “The Logic of Scientific Discovery,” Hutchinson & Co., 1959, Routledge, 1992.
[46] J. Barwise (Ed.), “Handbook of Mathematical Logic,” Elsevier, 1977.
[47] 王宪钧,“数理逻辑引论”,北京大学出版社,1982,1998年(再版)。
[48] J. A. Blair and R. H. Johnson, “The Current State of Informal Logic,” Informal Logic, 9(2–3), pp. 147-151, 1987.
[49] L. Groarke, “Informal Logic,” The Stanford Encyclopedia of Philosophy, Center for the Study of Language and Information (CSLI), Stanford University, 1996-2021.
[50] D. Walton, “Informal Logic: A Pragmatic Approach,” Cambridge University Press, 2008 (2nd Edition).
[51] M. G. Eaton, “Logic1 Informal Logic - Truth Through the Lenses of Informal Logic,” Veritas Press, 2022.
[52] 程京德,“相关性逻辑谬误及其实例”,微信公众号“数理逻辑与哲学逻辑”,2023年2月18日。
[53] 程京德,“弱/有缺陷归纳逻辑谬误及其实例”,微信公众号“数理逻辑与哲学逻辑”,2023年2月27日。
[54] 程京德,“预先假设/循环推理的逻辑谬误及其实例”,微信公众号“数理逻辑与哲学逻辑”,2023年3月14日。
[55] 程京德,“歧义性逻辑谬误及其实例”,微信公众号“数理逻辑与哲学逻辑”,2023年4月2日。
[56] 程京德,“非法转换性逻辑谬误及其实例”,微信公众号“数理逻辑与哲学逻辑”,2023年4月3日。
[57] 程京德,“‘权力趋于腐败,绝对的权力绝对地腐败’之逻辑:讨论中的逻辑谬误”,微信公众号“数理逻辑与哲学逻辑”,2023年4月3日。
[58] 程京德,“对‘东大已经落后于清华’一文之评论中的逻辑谬误”,微信公众号“数理逻辑与哲学逻辑”,科学网博客,2024年8月30日。
微信公众号“数理逻辑与哲学逻辑”
转载本文请联系原作者获取授权,同时请注明本文来自程京德科学网博客。 链接地址: https://blog.sciencenet.cn/blog-2371919-1458554.html
上一篇: “逻辑”与“逻辑学”(3) -- 中国名人的“逻辑/逻辑学”用例 下一篇: 如何高效地获得大语言模型的海量训练数据?